An inverse eigenvalue problem with rotational symmetry
نویسندگان
چکیده
منابع مشابه
On the nonnegative inverse eigenvalue problem of traditional matrices
In this paper, at first for a given set of real or complex numbers $sigma$ with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which $sigma$ is its spectrum. In continue we present some conditions for existence such nonnegative tridiagonal matrices.
متن کاملOn an Inverse Eigenvalue Problem for Unitary
We show that a unitary upper Hessenberg matrix with positive subdiago-nal elements is uniquely determined by its eigenvalues and the eigenvalues of a modiied principal submatrix. This provides an analog of a well-known result for Jacobi matrices.
متن کاملNonnegative Inverse Eigenvalue Problem
Nonnegative matrices have long been a sorce of interesting and challenging mathematical problems. They are real matrices with all their entries being nonnegative and arise in a num‐ ber of important application areas: communications systems, biological systems, economics, ecology, computer sciences, machine learning, and many other engineering systems. Inverse eigenvalue problems constitute an ...
متن کاملAN INVERSE PROBLEM WITH UNKNOWN RADIATION TERM
In this paper, we consider an inverse problem of linear heat equation with nonlinear boundary condition. We identify the temperature and the unknown radiation tern from an overspecified condition on the boundary
متن کاملSome results on the symmetric doubly stochastic inverse eigenvalue problem
The symmetric doubly stochastic inverse eigenvalue problem (hereafter SDIEP) is to determine the necessary and sufficient conditions for an $n$-tuple $sigma=(1,lambda_{2},lambda_{3},ldots,lambda_{n})in mathbb{R}^{n}$ with $|lambda_{i}|leq 1,~i=1,2,ldots,n$, to be the spectrum of an $ntimes n$ symmetric doubly stochastic matrix $A$. If there exists an $ntimes n$ symmetric doubly stochastic ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Inverse Problems
سال: 1988
ISSN: 0266-5611,1361-6420
DOI: 10.1088/0266-5611/4/4/011